Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells
نویسندگان
چکیده
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
منابع مشابه
Design of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency
In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...
متن کاملEffect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells
Effects of temperature on electrical parameters of polysilicon solar cells, fabricated using the phosphorous spin-on diffusion technique, have been studied. The current density–voltagecharacteristics of polycrystalline silicon solar cells were measured in dark at different temperaturelevels. For this purpose, a diode equivalent model was used to obtain saturation current densi...
متن کاملA 12 % Efficient Silicon / PEDOT : PSS Heterojunction Solar Cell Fabricated at < 100 ° C
Solar cells based on a heterojunction between crystalline silicon and the organic polymer PEDOT:PSS were fabricated at temperatures < 100oC by spin-coating. The Si/PEDOT interface blocks electrons in n-type silicon from moving to an anode and functions as a low-temperature alternative to diffused p-n junctions. Reverse recovery measurements were used to show that current in the device is primar...
متن کاملSilicon - Silicon anodic-bonding with intermediate glass layers using spin- on glasses - Micro Electro Mechanical Systems, 1996, MEMS '96, Proceedings. 'An Investigation of Micro Structur
This paper presents for the first time the preparation of glass layers, suitable for the anodic bonding of two silicon substrates using a spin-on glass. In this process a liquid sol solution is used within a spin coating process. The solution is a mixture based on silica sol, organic silicon containing compounds, like TEOS (Tetraethylorthosilicate), and a sodium salt all dissolved in ethanol. A...
متن کاملPhotoluminescence of mesoporous silica films impregnated with an erbium complex
Transparent mesoporous silica films were prepared by sol-gel spin coating on silicon wafers at room temperature. An erbium complex, erbium tris 8-hydroxyquinoline (ErQ), was homogeneously impregnated into the pores of the mesoporous silica films, and its concentration was easily controlled by using a solution immersing technique. The ErQ-impregnated mesoporous silica films show a room-temperatu...
متن کامل